Piezoelectric nanoelectromechanical systems integrating microcontact printed lead zirconate titanate films
Résumé
A piezoelectric nanoelectromechanical system (NEMS) with integrated actuation and detection capabilities was fabricated using lead zirconate titanate (PZT) thin films patterned by microcontact printing. PZT-coated cantilever resonators of various dimensions were fabricated to assess the variability in PZT properties as a function of the device dimensions; the microcontact-printed PZT was 281 nm thick. PZT layers of the cantilevers were poled at 107 kV cm−1 and 150 °C to improve their piezoelectric properties. It was demonstrated that PZT piezoelectrics can be utilized for simultaneous actuation and detection of resonance. The PZT cantilevers were analytically modelled to estimate values of their piezoelectric coefficient d31. Mechanical tip displacement detection of the cantilevers by laser vibrometer was also carried out to validate the estimation of d31.
Fichier principal
CP-PZT-JMM V12.pdf (8.78 Mo)
Télécharger le fichier
CP-PZT-JMM V12.docx (24.21 Mo)
Télécharger le fichier